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Two physiologically based pharmacokinetic models for trichloroethylene (TCE) in mice and humans
were calibrated with new toxicokinetic data sets. Calibration is an important step in model
development, essential to a legitimate use of models for research or regulatory purposes. A
Bayesian statistical framework was used to combine prior information about the model parameters
with the data likelihood to yield posterior parameter distributions. For mice, these distributions
represent uncertainty. For humans, the use of a population statistical model yielded estimates of
both variability and uncertainty in human toxicokinetics of TCE. After adjustment of the models by
Markov chain Monte Carlo sampling, the mouse model agreed with a large part of the data. Yet,
some data on secondary metabolites were not fit well. The posterior parameter distributions
obtained for mice were quite narrow (coefficient of variation [CV] of about 10 or 20%), but these
CVs might be underestimated because of the incomplete fit of the model. The data fit, for humans,
was better than for mice. Yet, some improvement of the model is needed to correctly describe
trichloroethanol concentrations over long time periods. Posterior uncertainties about the population
means corresponded to 10-20% CV. In terms of human population variability, volumes and flows
varied across subject by approximately 20% CV. The variability was somewhat higher for partition
coefficients (between 30 and 40%) and much higher for the metabolic parameters (standard
deviations representing about a factor of 2). Finally, the analysis points to differences between
human males and females in the toxicokinetics of TCE. The significance of these differences in
terms of risk remains to be investigated. Key words: Bayesian, human, Markov chain Monte Carlo,
mouse, PBPK model, TCE, toxicokinetics, tricholoroethylene, uncertainty analysis, variability.
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New physiologically based pharmacokinetic
(PBPK) models of trichloroethylene (TCE) in
mice and humans have recently been pub-
lished (1,2), together with new toxicokinetic
data sets. These models, prior to their use in
research or regulation, should be carefully
calibrated by confrontation with the data. It
is most efficient in terms of information use
and from a statistical point of view to com-
bine two forms of information: prior knowl-
edge and data. Neither source of information
is complete. If prior knowledge were suffi-
cient, experiments would not need to be per-
formed, but data alone are insufficient to pin
down all parameters of a complex PBPK
model to reasonable values. Prior knowledge
can be summarized as prior parameter distrib-
utions. These can be obtained from the scien-
tific literature, from specific in vitro
experiments, and, as is the case here, from fit-
ting previous data. The data [in this case the
new data provided to us by Fisher (2)] are
introduced through the use of a likelihood
function. A Bayesian statistical framework
gives rigorous rules to combine the prior dis-
tributions with the data likelihood, to yield
posterior parameter distributions. In the case
of complex models, like those described here,
the posterior parameter distributions can be
obtained by numerical Markov chain Monte
Carlo (MCMC) techniques (3,4). This statis-
tical methodology is gaining interest and is
establishing itself for the calibration and

validation of PBPK models (3,5-8). Beyond
improving the fit, this method also provides
distributions of prediction estimates directly
usable as inputs for uncertainty analysis of
cancer dose-response relationships.

An interesting aspect of the human data
analyzed here is that they have been collected
individually on a number of male and female
volunteers. A hierarchical population model
(4,5) deconvolves the various levels of vari-
ability present in the data. Such a model, of
which the PBPK model is just a component,
is easily calibrated with Bayesian numerical
methods. This offers a unique opportunity to
examine separately the important issues of
variability and uncertainty in human toxico-
kinetics of trichloroethylene.

Methods
Data
Mice. Groups of male B6C3F, mice (body
weight [bw] 25-30 g) were exposed to TCE
or its metabolites by intravenous (i.v.) injec-
tion (9) or by oral gavage (1).

All i.v. doses were equal to 100 mg of the
compound administered per kilogram of
body weight. After chloral hydrate (CH)
administration, venous concentrations of CH,
free trichloroethanol (TCOH), trichloroacetic
acid (TCA), and dichloroacetic acid (DCA),
as well as the amount of urine excreted
metabolites, were recorded at various times

after dosing. Similarly, after TCA i.v. dosing,
venous concentrations of TCA and DCA, as
well as the amount ofDCA excreted in urine,
were recorded. Following TCOH dosing,
venous concentrations of CH, TCOH, TCA,
and the urine-excreted amounts ofTCOH
and glucuronidated trichloroethanol
(TCOG), were measured. Finally, after DCA
dosing, venous concentrations and urine-
excreted amounts ofDCA were measured.

When trichloroethylene was administered
by gavage in corn oil, doses of 300, 600,
1,200, and 2,000 mg/kg bw were used. TCE
concentrations were measured in venous
blood, liver, fat, lung, and kidney. CH and
TCOH concentrations were recorded in
venous blood, liver, lung, and kidney. TCA,
DCA, and TCOG concentrations were
obtained in venous blood, liver, and kidney.
The quantities of TCA and TCOG excreted
in urine were also recorded.

Additional data, published by Templin
et al. (10), were partly used. Groups of four
male B6C3F1 mice (bw 27 g) were gavaged
with 3.8 mmol/kg (500 mg/kg) TCE. The
venous blood concentrations of TCE, TCA,
and DCA were measured at various times.

Humans. A group of 21 volunteers (10
females and 11 males) were exposed by
inhalation to 50, 60, or 100 ppm TCE for
4 hr (2). Body weight and adiposity were
recorded for each subject. The venous blood
concentrations of TCE, TCOH, and TCA
were measured during and after exposure. For
some subjects, the exhaled air concentration
of TCE was also recorded at various times
after exposure. Finally, the cumulated quanti-
ties ofTCA and TCOH glucuronide excreted
in urine were recorded. The data for each
individual were available to us.

Toxicokinetic and Statstical Models
Mice. The description of the physiological
model used for mice can be found in Abbas
and Fisher (1). The model equations were
transcribed to a format suitable for MCSim
(11). Three modifications were made to the
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model, after consultation with the original
authors. a) Metabolism of TCE in the lung
was turned off. b) For several parameters, the
scaling power of body weight was changed
from 0.74 to 0.75 for standardization with
the model of Clewell et al. (12). c) The vol-
umes of the "body" and poorly perfused com-
partments, and the blood flow to the body
compartment, were computed by difference
at each iteration so that the sum of the organ
volumes equaled 82% of the body weight and
the sum of organ flows equaled cardiac out-
put. Given this reparameterization, the model
had a total of 57 independent parameters.

The statistical model used for mice lumps
uncertainty and variability, since the animal
data were aggregated (only the mean and
standard deviation [SD] for several animals
were provided). For a schematic of the model,
see for example, Bois (13). Various concen-
trations or quantities (y) were measured. The
expected values of these measurements are a
function (J) of exposure level (E), time (t), a
set of physiological parameters of unknown
values (0), and a set of measured, covariate
parameters (9p), such as body weight. E, t, 0,
and q are experiment specific. All animals in
an experiment were supposed to have
behaved similarly, from a toxicokinetic point
of view. The function f is the pharmacoki-
netic model described above. The concentra-
tions or quantities actually observed are also
affected by measurement error and inter-
individual variability. Only aggregated data

Table 1. Values (2) or distributions used for the assay
SDs, for each of the measured end points of the mouse
data set.

Parameter SD
CV 1.25
CL 1.25
CLU LogUniform distribution
CF 1.39
CK 1.33
CCHL 1.11
CCHLU 1.27
CCHV 1.25
CCHK 1.13
CTCL 1.16
CTCV 1.19
CTCK 1.21
CDCL 1.24
CDCV 1.24
CDCK 1.40
COHL 1.17
COHLU 1.16
COHV 1.21
COHK 1.19
COGL 1.41
COGV 1.27
COGK 1.34
ACHKR LogUniform distribution
ATCKR logUniform distribution
ADCKR LogUniform distribution
AOHKR LogUniform distribution

were available, and the corresponding errors

were assumed to be independent and log-nor-
mally distributed, with mean zero and vari-
ance a2 (on the log scale). The variance
vector a2 had 27 components for mice, most

of them known by repeating the experiments
(Table 1). The unknown experimental vari-
ances were sampled with a standard non-

informative prior distribution P(ai2) CS,-2
(14). It was assumed that each 0 parameter
was a priori distributed log-normally (except
for PCCH, the fraction TCE converted to
CH, distributed normally), with averages M
and variances S (in log scale).
A major advantage of physiological

modeling is to provide a priori information
on several of the mean parameter values for
mice. Values for the hyperparameters M were

set on the basis of the parameter values used
by Fisher (2), or when applicable, on the
basis of the posterior parameter distributions
obtained from the analysis of the Clewell
et al. model (12,13). To set S, a distinction
was made between the physiological parame-

ters or partition coefficients (which are quite
well known) and the other metabolic or phar-
macokinetic parameters (which are model
specific and little known a priori). For the
first group of parameters uncertainties of the
order of 20-50% were assigned (3,5,6). For
the second group of parameters, a "vague"
distribution was assumed and S was set to

correspond to a factor between 2 ("quite
uncertain") or 5 ("very uncertain"). All priors
on p were truncated to ±2 x S or ±3 x S to
avoid reaching unrealistic values. Table 2
gives for mice the values used for exp(M)
(i.e., the geometric means) and exp(S) (i.e.,
the geometric standard deviation [GSD]),
both ofwhich lie on the natural scale.

Humans. The PBPK model for humans is
a simplification of the mouse model.
Basically, in addition to TCE, only the distri-
bution ofTCOH and TCA in blood, liver,
kidney, and rest of the body is described by
physiological compartments. CH is not mod-
eled explicitly: a fraction ofTCE metabolized
forms TCOH while the rest forms TCA.
Formation of DCA is not modeled. A frac-
tion of TCOH is glucuronidated to give
TCOG, which is supposed to be immediately
excreted in urine. Four modifications to the
original model were introduced. For several
parameters, the scaling power of body weight
was changed from 0.74 to 0.75 for standard-
ization with the model of Clewell et al. (12).
The volumes of the body and poorly perfused
compartments and the blood flow to the
body compartment were computed by differ-
ences at each iteration so that the sum of the
organ volumes equaled 82% of the body
weight and the sum of organ flows equaled
cardiac output; the quantity of TCOG
excreted is in TCOH equivalents, rather than

in TCOG equivalents. The Michaelis-
Menten coefficient Km (labeled KMTCOH)
for the formation ofTCOG was reexpressed
as the ratio V?,<JKm for easier Monte Carlo
sampling (preliminary runs showed that
Vma,, and Km for that reaction are highly cor-

related). The model had 33 independent
parameters.

The statistical model describing uncer-

tainties and variabilities in human data was

constructed using a hierarchical population
approach (3,4). The model has two major
components: the individual level and the
population level. At the individual level, vari-
ous concentrations or quantities (y) were

measured. The expected values of these meas-

urements are a function f) of exposure level
(E), time (t), a set of physiological parame-

ters of unknown values (0), and a set of meas-
ured, covariate parameters ((p), such as body
weight. E, t, 0, and (p are experiment specific.
The function f is the human pharmaco-
kinetic model. The concentrations or quanti-
ties actually observed are also affected by
measurement errors. These errors were

assumed to be independent and log-normally
distributed, with mean zero and variance a2
(on the log scale). The variance vector a2 had
six components for humans.

At the population level, each component
of the 0 parameter set was assumed to be dis-
tributed log-normally, with averages p and
variances 12 (in log scale). A priori knowledge
of p and 12 is available under the form of
standard values for some parameters. Since
uncertainty in these average values and vari-
ances has to be acknowledged, a priori log-
normal distributions were assumed for the
population means p (with hyperparameters M
and S) and a standard inverse gamma distri-
bution (15) for the population variances 12.

Values for the hyperparametersM were set
on the basis of the parameter values used by
Fisher (2), or when applicable, on the basis of
the posterior parameter distributions obtained
from the analysis of the Clewell et al. model
(12,13). To set S, a distinction was made
between the physiological parameters or parti-
tion coefficients (which are quite well known)
and the other metabolic or pharmacokinetic
parameters (which are model specific and little
known a priori). For first group of parameters
uncertainties of the order of 20-50% were

assigned (3,5,6). For the second group of
parameters, a vague distribution was assumed
and S was set to correspond to a factor of 5.
All priors on p were truncated to ±2 x S.

The coefficient of the inverse-gamma
prior on 12 was set to the posterior values
found in the previous analysis (13) when
applicable and to 0.22 otherwise (this corre-

sponds to a CV of 50%). The a coefficients
of the inverse-gamma priors were set to 1 or

6 [the latter when a posterior distribution
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had already been obtained from analysis
the Clewell et al. data (13), which had s
eral groups of subjects]. Table 3 gives
humans the values used for exp(M)-i
the geometric means-exp(S) -the GSE
and the a and ,B coefficients. For a2
standard noninformative prior distribut
p(G12,... n2) 0t1-2 X ... X (0n 2 was use

of
;ev-
for
i.e.,

2, a

:ion
d.

Statistical Computation ofPosterior
Parameter Distributions
From Bayes' theorem, the joint posterior
distribution of the parameters to estimate,
P(O, a2, p, 12ly, 9, E, t, M, S, La), in the case
ofhumans, is proportional to the likelihood of
the data multiplied by the parameters' priors:

P(O, a2, l, 121y, 9, E, t, M) S,sy )
P(y10,a2,9,E,t) * AOIp,12) . p(a2).
P(pIM,S) * p(1212) [1]

A similar, but simpler, expression can be
obtained in the case of the mouse model. For
mice and humans, the likelihood term is
given by the normal measurement model:

log(y) - N(log f(O,p,E,t,)02) [2]

As mentioned above, the prior distribution
for 2 is: p(a512,...,a n2) _-12 X ... X an,2,
with eventually some fixed components.

For humans, the prior distribution of
each component of 0 is an independent
normal distribution in log space:

log(O).-N(p,z.,) [31

with truncation constraints. Each component
of p, or 12 is assigned an independent hyper-
prior distribution, pi - N(M,S2) and
12 inverse-gamma(ac,3), as described in the
previous section. For mice, the ps and 12 lev-
els are not defined and prior distribution of 0
depends directly onM and S.

Current practice in Bayesian statistics is to
summarize a complicated high-dimensional
posterior distribution by random draws of the
vector of parameters. This is currently the
most effective way to perform high-
dimensional numerical integration. Because
there are many parameters to estimate,
Metropolis-Hasting sampling was used to
perform a random walk through the posterior
distribution. This iterative sampling proce-
dure is particularly convenient in the case of
hierarchical models. It belongs to a class of
MCMC techniques that has recently received
much interest (3,16-21). Three independent
MCMC runs were performed for each
species. Convergence was monitored using
the method of Gelman and Rubin (22).

Table 2 Prior and posterior distributions for the scaling coefficients of the mouse PBPK model (1). All distributions
are log-normal with truncations at ±2 SDs, except where indicated.

Parameter

BWa
QCCb
QpCb
QLCb
QKCC
QFCb
VLUCC
VLCb
VKCc
VFCb
VRCb
Klb
K2b
K3b
pBb
PLuC
pLb
PKc,d
PFb
pSb
PRb
PCHLUc
PCHLC
PCHKc.d
PCHBc,d
POHLUc
POHLC,d
POHKC,d
POHBc
POGLUC
POGLc
POGKc
POGBC,d
PTCLUC
PTCLC
PTCKC
PTCBC
PDCLUc
PDCLC,d
PDCKC
PDCBC
VMAXCb
KMb
PCCHa,e
KRCHCC
PCTCOCc
PCTCACC
VMTCOCC
KMTCOHC
KOCHCC
KROHCC
KFTCCC
KRTCCC
KFDCCC
KRDCCa
KROGCC
KGBLCC

Prior distribution
Geometric Geometric
mean SD

0.03 1.11
20.1 1.08
21.8 1.08
0.2 1.08
0.09 1.22
0.054 1.14
0.007 1.22
0.05 1.07
0.018 1.22
0.063 1.12
0.05 1.07
1 2.72

17.3 1.24
1.14 1.36

16.4 1.13
2.61 1.6
1.74 1.2
2.07 1.6

30.6 1.15
0.756 1.21
1.75 1.21
1.65 1.6
1.42 1.6
0.98 1.6
1.35 1.6
0.78 1.6
1.3 1.6
1.02 1.6
1.11 1.6
1.06 2
0.56 2
1.44 2
1.11 2
0.54 1.6
1.18 1.6
0.74 1.6
0.88 1.6
1.23 1.6
1.08 1.6
0.74 1.6
0.37 1.6

38.1 1.15
0.47 1.57
0.99 0.01
0.06 5

309 5
115 5
16.5 5
15.7 5
1.32 5
1.14 5
0.35 5
1.55 5

20.5 5
1 2.72

32.8 5
4.61 5

Geometric
mean

0.0354
14.4
19.3
0.259
0.0944
0.0455
0.00654
0.0478
0.0221
0.0773
0.0503
4.18
3.46
0.0916

22.9
1.81
3.10
4.81

15.6
1.41
1.97
1.96
1.61
0.361
1.51
1.71
3.97
3.90
0.595
1.01
0.897
2.65
0.449
0.518
0.780
0.758
0.857
1.14
0.636
0.843
0.548

45.2
10.1
0.995
0.0493

403
119
74.4
49.9
5.58
0.133
0.546
0.596

41.7
2.62

19.9
16.4

Posterior distribution
Geometric

SD

1.02
1.05
1.07
1.05
1.21
1.11
1.18
1.06
1.12
1.10
1.06
1.14
1.10
1.01
1.08
1.10
1.04
1.06
1.05
1.13
1.22
1.07
1.05
1.06
1.08
1.04
1.04
1.04
1.08
1.73
1.08
1.13
1.25
1.46
1.03
1.04
1.05
1.43
1.05
1.08
1.06
1.03
1.05
0.00380
1.17
1.09
1.08
1.11
1.14
1.13
1.18
1.08
1.12
1.09
1.14
1.16
1.08

2.5%
percentile

0.0334
13.1
16.8
0.235
0.0646
0.0373
0.00480
0.0424
0.0180
0.0646
0.0442
3.22
2.86
0.0898

19.7
1.50
2.83
4.31

14.3
1.08
1.31
1.71
1.45
0.323
1.29
1.58
3.71
3.63
0.516
0.361
0.771
2.12
0.275
0.249
0.733
0.706
0.773
0.572
0.576
0.730
0.487

42.5
9.21
0.986
0.0365

347
103
60.9
39.3
4.39
0.0983
0.472
0.489

35.5
2.13

15.2
14.2

97.5%
percentile

0.0365
16.1
22.0
0.284
0.129
0.0561
0.00900
0.0529
0.0265
0.0944
0.0567
5.47
4.14
0.0944

26.6
2.19
3.35
5.42

17.5
1.75
2.89
2.23
1.78
0.399
1.74
1.85
4.31
4.14
0.683
3.00
1.04
3.42
0.668
1.07
0.830
0.812
0.945
2.33
0.700
0.973
0.619

47.5
11.1
1.00
0.0679

478
141
90.9
64.1
7.03
0.183
0.639
0.749

48.4
3.49

26.8
19.1

'Prior set by ourselves. bPrior based on the posterior distribution obtained previously 13). TPrior based on Fisher's values (2).
drruncation at ±3 SDs. 'For this parameter a normal distribution was used, with truncation at 0.95 and 1.
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Table 3. Prior and posterior distributions for the population averages (p), and population SDs (E), of the scaling
coefficients for the human PBPK model.

Prior on p
Geometric mean (GSD)

15.2 (1.16)
16.1 (1.16)
0.232 (1.17)
0.198 (1.22)
0.0523 (1.16)
0.014 (1.22)
0.026 (1.13)
0.00401 (1.22)
0.198 (1.13)
0.0483 (1.13)

13.7 (1.19)
0.391 (1.6)
6.69 (1.32)
1.08 (1.6)

53 (1.22)
2.7 (1.23)
5.05 (1.28)
0.67 (1.6)
0.589 (1.6)
2.15 (1.6)
0.91 (1.6)
0.47 (1.6)
0.66 (1.6)
0.66 (1.6)
0.519 (1.6)

43.8 (1.97)
0.542 (2.35)
0.9 (0.1)
1 (5)
1.57 (5)
1 (5)
0.1 (5)
1(5)

Prior on I
Geometric mean (GSD)

1.41 (1.12)
1.39 (1 .10)
1.42 (1.11)

1.47 (1.12)

1.37 (1.10)

1.37 (1.10)
1.37 (1.10)
1.52 (1.14)

1.52 (1.16)

1.50 (1.15)
1.49 (1 .1 5)
1.51 (1.16)

1.70 (1.28)
1.76 (1.35)

Posterior on p
Geometric mean (GSD)

16.3 (1.08)
16.9 (1.08)
0.244 (1.07)
0.194 (1.08)
0.0639 (1.10)
0.0141 (1.11)
0.0257 (1.10)
0.00401 (1.13)
0.196 (1.05)
0.0437 (1.10)

18.0 (1.09)
0.386 (1.18)
5.81 (1.15)
1.07 (1.18)

50.9 (1.15)
1.50 (1.14)
3.67 (1.11)
0.685 (1.18)
0.616 (1.18)
2.16 (1.18)
1.26 (1.10)
0.472 (1.18)
0.708 (1.21)
0.668 (1.18)
0.601 (1.10)
4.22 (1.19)
0.801 (1.40)
0.730 (0.041)
5.26 (1.56)
2.72 (1.12)
8.58 (1.14)
0.301 (1.22)
1.15 (1.19)

Posterior on l
Geometric mean (GSD)

1.30 (1.15)
1.36 (1.17)
1.20 (1.12)
1.26 (1.14)
1.19 (1 .12)
1.25 (1 .14)
1.14 (1 .08)
1.26 (1.14)
1.21 (1.11)
1.13 (1.08)
1.21 (1.12)
1.37 (1.24)
1.22 (1.15)
1.37 (1.24)
1.32 (1.20)
1.22 (1.17)
1.17 (1.10)
1.37 (1.24)
1.37 (1.25)
1.37 (1.24)
1.47 (1.24)
1.37 (1.24)
1.37 (1.24)
1.37 (1.24)
1.41 (1.23)
1.48 (1.33)
1.96 (1.65)
0.187 (0.10)
1.76 (1.72)
1.70 (1.35)
1.51 (1.29)
1.98 (1.57)
2.18 (1.56)

'Prior distribution based on the posterior distribution obtained previously (3). `Prior distribution on p based on Fisher's values (2). A
vague inverse-gamma (1, 0.22) was used. cFor this parameter a normal distribution was used, with truncation at 0.6 and 1, so the
parameters are mean and SD in natural space.

Predictad Data Value

Figure 1. Observed versus predicted mice data values
(all concentrations or quantities) for the Monte Carlo
iteration of highest posterior probability.

Results
M;ce

For mice, 20,000 iterations were necessary to

reach convergence of the sampler. One of
every 5 of the last 5,000 simulations of three
independent Markov chains were recorded,
yielding 3,000 sets of parameter values from
which the inferences and predictions
presented in the following were made.

Tinme (hr)

Figure 2. Predicted (solid line) and observed (points)
time course of TCE concentration in liver of mice dosed
with various quantities of TCE in corn oil. Error bars cor-

respond to ±2 SD.

Quality ofdata adjustment. Figure 1
presents the data values observed compared
with their predicted counterparts (data values
are concentrations or excreted quantities).
Predictions were made with the parameter
set of highest posterior density. For a perfect
fit, all points would fall on the diagonal
(equality of predicted and observed values).
Such an adjustment is not expected given the
analytical measurement errors in the data.

The graph is presented on log-log scale,
since the errors are assumed to be log-
normally distributed and the data span a wide
range. Most of the residuals are contained
within a factor of 3 along the diagonal, but
quite a few reach a factor of 10 or even a fac-
tor of 100. Figures 2-7 show all the gavage
data and corresponding predictions in the
liver as a function of time. Basically the model
reproduces correctly the profiles for TCE and
TCA. TCOH and TCOG concentrations are
less well predicted. CH and DCA concentra-
tions and TCOG excreted are rather poorly
fitted. The fact that each data point represents
a different group of animals may explain the
noise present in the data. However, some dif-
ferences between model and data appear to be
systematic (Figure 3, for example).

Posterorparameter distbutions. The joint
distribution of all parameters is obtained in
output of the MCMC simulations. This allows
consideration of marginal distributions (distrib-
utions of the parameters considered individu-
ally) and also ofcorrelations ofany order. Table
1 summarizes the posterior distributions of the
mouse parameter values obtained in the last
1,000 iterations of the three runs performed
(results of the three runs are pooled, and the
distributions are established with 3,000 values).
The geometric means can be interpreted as rep-
resenting the values for an "average" mouse.
Note that the columns of geometric standard
deviations represent the sum of group variabil-
ity among mice and experimental error.
Overall, the parameters retain physiologically
plausible values.

Yet the posterior means for several param-
eters are quite far from the prior means. This
is observed for metabolic parameters or for
some partition coefficients. In particular, the
value of KM for TCE is 20 times that found
with the previous model and experiments.
SDs about these geometric means are quite
low and hover around 1.1 (corresponding to
a 10% CV, which includes uncertainty and
variability). The parameter values are there-
fore quite well identified by the data.

Very high correlations are observed
between parameter estimates for mice (up to
0.95 for KFTCC and KFDCC). Any para-
meterization neglecting to estimate these
covariances will produce incorrect predic-
tions, since these parameters cannot be sam-
pled independently without producing
highly improbable combinations and hence
highly improbable predictions.

Humans
More than 100,000 iterations were necessary
to reach convergence of the sampler in the
case of human data. One of every 10 of the
last 50,000 simulations of three independent
Markov chains were recorded, yielding
15,000 sets of parameter values from which
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Parameter

QCCa
QpCa
QLCa
QKCb
QFCa
VLUCb
VLCa
VKCb
VFCa
VRca
PBa
PLUb
pLa
PKb
PFa
pSa
PRa
POHLU b
POHLb
POHKb
POHBb
PTCLUb
PTCLb
PTCKb
PTCBb
VMAXCa
KMa
POHC
VMTCOCb
KMTCOHb
KOCHCb
KTMETCb
KRTCCb

0
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Figure 3. Predicted (solid line) and observed (points)
time course of CH concentration in liver of mice dosed
with various quantities of TCE in corn oil. Error bars cor-
respond to ±2 SD.
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Figure 6. Predicted (solid line) and observed (points)
time course of DCA concentration in liver of mice dosed
with various quantities of TCE in corn oil. Error bars cor-
respond to ±2 SD.

the inferences and predictions presented in
the following were made.

Quality ofdata adjustment. Figure 8 gives
the observed data values versus their predicted
counterparts (data values are concentrations or
excreted quantities). Predictions were made
with the parameter set of highest posterior
density. The graph is presented on log-log
scale, since the errors are assumed to be log-
normally distributed and the data span a wide
range. Most of the residuals are contained
within a factor of 2 along the diagonal. The fit
here is substantially better than for mice.
Figures 9-11 show all the data and corre-
sponding predictions as a function of time.
The model was adjusted to each individual's
data, using a population toxicokinetic
approach. The data are reasonably well fitted,
overall, and particularly the TCA data.
However, the concentration ofTCE in alveo-
lar air and venous blood is not adjusted satis-
factorily, given the quality of adjustment
expected from a PBPK model: The curves do
not "bend" enough (Figure 9). Another area
of significant misfit is the prediction of
TCOH concentration in venous blood. The
predicted terminal half-life is clearly too short
(data not shown). Yet, a good adjustment of
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Figure 4. Predicted (solid line) and observed (points)
time course of TCOH concentration in liver of mice
dosed with various quantities of TCE in corn oil. Error
bars correspond to ±2 SD.
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Figure 7. Predicted (solid line) and observed (points)
time course of TCOG concentration in liver of mice
dosed with various quantities of TCE in corn oil. Error
bars correspond to ±2 SD.

TCOH can be obtained for the volunteers
observed up to 22 hr (Figure 10). Most of the
variability observed on the figures is due to
differences in inhalation exposure levels (con-
centrations of 50, 60, or 100 ppm TCE were
used). However, a large part of the variability
in TCOG elimination to urine seems due to
factors other than exposure levels (data not
shown). Somewhat troublesome is the dis-
agreement between measured (albeit, approxi-
mately) fractions of body weight as fat (VFC)
and the corresponding toxicokinetic estimates.
The estimates take into account the measured
values as well as what can be inferred about
the size of the fat compartment from the TCE
and other concentration data. The measured
values ofVFC reach much more extreme val-
ues than the estimates (Figure 12).

Posteriorparameter distributions. Table 3
summarizes the posterior distributions of the
population means and SDs for all human
model parameters (the distributions were
established with 15,000 values). The popula-
tion means represent the values for an average
person. They are affected by uncertainty and
were each assigned a geometric mean and a
GSD (note that an approximate CV can
quickly be computed, since CV = GSD - 1).

Time (hr)

Figure 5. Predicted (solid line) and observed (points)
time course of TCA concentration in liver of mice dosed
with various quantities of TCE in corn oil. Error bars cor-
respond to ±2 SD.
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Figure 8. Observed versus predicted human data values
(all concentrations or quantities) for the Monte Carlo
iteration of highest posterior probability.

The population SDs measure between-subject
variability. They are also affected by uncer-
tainty (i.e., the population SD cannot be
exactly computed from a finite sample).

The posterior means for several parame-
ters are quite far from their prior estimates.
The location of the blood over air partition
coefficient, PB, is shifted from 13.7 (±20%)
to 18 (± 10%). The location of other partition
coefficients (slowly perfused muscle over
blood and richly perfused liver over blood) is
also changed. The largest shifts are observed
for metabolic parameters. The estimate of the
scaling coefficient of TCE Vmax in liver
(VMAXC) is 4.22 (±20%) instead of 43.8. A
large uncertainty existed on that prior esti-
mate, but 4.22 is still outside its prior 95%
confidence interval (lower bound at 12.6).
Therefore, there appears to be a conflict
between the data studied here and the data
studied previously. Note also that the poste-
rior mean of the fraction TCE converted to
TCOH (POH) is quite lower than a priori
estimated. The posterior means of the scaling
coefficient of Vmax for TCOH metabolism
(VMTCOC) and of the scaling coefficient of
the rate constant from TCOH to TCA
(KOCHC) are much increased but not
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Figure 9. Predicted (solid lines) and observed (points)
time course of TCE concentration in venous blood of
human volunteers exposed by inhalation to various con-
centrations of TCE. The error bars presented on a data
point correspond to ±2 estimated measurement SD (the
size of the error is the same for all points).
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Figure 12. Observed versus predicted fraction of body
weight as fat in human volunteers exposed by inhalation
to various concentrations of TCE. The error bars span the
95% confidence intervals of the predictions.

incompatible with the vague priors used. In
terms of uncertainty, SDs about the posterior
means are quite low, approximately 1.1 or 1.2
(corresponding to a 10-20% CV). The para-
meter values are overall quite well identified
by the data.

Estimates of population variability are
given by the posteriors of the population SDs,
E. Volumes and flows appear to vary across
subject by approximately 20% (CV). The
variability is somewhat higher for partition
coefficients (between 30 and 40% CVs). It is
much higher for the metabolic parameters
(SDs representing approximately a factor of 2
difference). For example, the lowest rate con-
stant scaling coefficient for TCA metabolism
(KITMETC) is 0.12 x 1.6 hrl (subject 1 1OF)
and the highest is 1.1 x 1.25 hr'1 (subject
10IF, the subject with lowest TCA levels on
Figure 11). For the scaling coefficient of the
rate constant ofTCA loss to urine (KRTCC),
the values range from 0.13 x 1.2 hr'1 (subject
106M) to 3.4 x 1.2 hr-1 (subject 1 1 1 F)
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Figure 10. Predicted (solid lines) and observed (points)
time course of TCOH concentration in venous blood of
human volunteers exposed by inhalation to various con-
centrations of TCE. These volunteers were followed for
up to 22 hr. The error bars presented on a data point cor-
respond to ±2 estimated measurement SD (the size of
the error is the same for all points).
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Figure 13. Individual estiretates of the rate constant
scaling coefficient for TCA metabolism (KT'MVETC) and of
the rate constant of TCA loss to urine (KRTCC). The error
bars span the 95% confidence intervals of the esti-
mates. Large individual differences are observed, with
some degree of correlation.

(Figure 13). Subject 11 IF excreted the highest
amount of TCA in urine (data not shown).
Note that the estimates of variability given are
themselves affected by uncertainty (up to
50% CV for the variability estimates of the
metabolic parameters). For example, the 95%
posterior confidence interval of S for KRTCC
is [1.77, 2.85].

Examination of the subjects' parameter
values points to peculiar pharmacokinetic
behaviors for some of them:

Subject 106M has the highest fraction fat
(VFC), particularly for a male (some
female subjects approach his VF, but no
males of the group studied approach it).
He is also an "outlier" with a TCE fat
over blood partition coefficient 3 times
that of the others. His maximal rate scal-
ing coefficient for TCE metabolism
(VMAXC) and his rate constant ofTCA
loss to urine (KRTCC) are the lowest.
Note that this subject shows the lowest
amount of TCA excreted (data not
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Figure 11. Predicted (solid lines) and observed (points)
time course of TCA concentration in venous blood of
human volunteers exposed by inhalation to various con-
centrations of TCE. The error bars presented on a data
point correspond to ±2 estimated measurement SD (the
size of the error is the same for all points).
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Figure 14. Individual estimates of the rate constant scal-
ing coefficient for TCOH to TCA, grouped by sex. The error
bars span the 95% confidence intervals of the estimates.

shown), and his TCOH blood concentra-
tions are not well modeled.

* Subject 201M is also outstanding for his
highest alveolar ventilation rate scaling co-
efficient (QPC), highest fractional blood
flow to the kidney (QKC), and high
TCOH body over blood partition coeffi-
cient (POHB), particularly for a male
(females tend to have higher POHBs, see
below). This subject has the second lowest
TCA excretion in urine and one of the low-
est TCOG elimination. It seems that this
subject can be characterized as "fast" in
intake and elimination, at least from a phys-
iological (ifnot enzymatic) point ofview.

* Subject 103M has a Michaelis-Menten
constant (KM) about 3 times as high as
everyone else. He has one of the highest
excretions ofTCA in urine.
Splitting the subjects by sex reveals some

differences between males and females. The
visual examination of the marginal distribu-
tions of a given parameter for each subject
reveals little pattern. For example, in Figure
14, it appears that female subjects exhibit
higher values of KOCHC, the rate constant
scaling coefficient for TCOH to TCA.
However, a large part of the variability
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observed is due to uncertainty about the
population mean. When the effect of the
overall mean is removed, the difference is
highly significant: P(KOCHCfemale >
KOCHCmaie) = 0.9998 (i.e., the female aver-
age was superior to the male average 99.98%
of the times in the sample of 15,000 parame-
ter vectors obtained by MCMC sampling).
Other significant sex differences were found:
* The scaling coefficient of the alveolar

ventilation rate is higher for males
P(QPCmale > QPCfemale) = 0.9997. This
implies that the data are sufficiently infor-
mative to show such a difference and also
that the surface area correction is not suffi-
cient to explain sex differences in alveolar
ventilation. The level of physical training
might be another covariate to consider for
alveolar ventilation in human studies.

* The posterior estimates of the VFC are
higher on average for females than for
males: P(VFCfemale > VFCmak) > 0.9999.
That was expected and is influenced by
the covariate measurements of adiposity
and by the toxicokinetic data.

* Female subjects also seem to have higher
TCOH body over blood partition coeffi-
cients: P(POHBemale > POHBmale) >
0.9999; they also have a higher Vma,, over
Km ratio (i.e., rate constant at low concen-
tration) for TCOH glucuronidation:
P(KMTCOHfemale > KMTCOHmale) >

0.9999, and a higher rate constant scaling
coefficient for TCA urinary excretion:
P(KRTCCfema > KRTCCmak) > 0.9943.

* Males were found to have higher TCA
body over blood partition coefficients:
P(PTCB,k> PTCBfa) = 0.992.
All other male versus female parameter

averages do differ slightly, but the P values are
less than 0.95, most ofthem being around 0.5.

Discussion
The mice data show a rather large inter-
individual or interlot variability. There is lit-
tle to do about that, unless the experimental
design were to allow the observation of indi-
vidual animals. The data still permit an
extensive calibration of the model. The
human data have the advantage of being
available for each individual. There appear to
be, a posteriori, a few outlying points (for
example, Figure 10), which could be checked
and eventually removed. These few apparent
outliers have little weight and should not
affect sensibly the results presented here.
There could be a problem with the measure-
ment of fat content; this will be discussed
below, in light of the model fit.

The mouse model is quite complicated,
and yet some aspects of the data are not so well
described by it (CH and DCA concentrations,
and TCOG excreted). This is somewhat disap-
pointing, given the complexity of the model,

and one wonders what will have to be done to
fit such an extensive data set. It is possible that
some metabolic reactions do not obey simple
Michaelis-Menten reactions or that prior opin-
ions about the model parameters were for
some of them overly confident. Note also that
even in large models, model uncertainty can be
large. The model, for example, does not
include hepatic recycling or all possibilities of
extrahepatic metabolism. Yet, overall, the
model fits well a large part of the data, in par-
ticular TCE and TCA distribution. It would
be interesting to see the performance of other
models [e.g., those presented in (12,23)] with
this data set, which would allow a formal com-
parison of the competing models on the basis
of a common measure of goodness of fit, such
as likelihood ratios.

The posterior parameter distributions
obtained for mice are quite narrow (with CVs
of about 10 or 20%), indicating that the data
are strongly informative for most parts of the
model. Indeed, as indicated above, some para-
meters or processes might need to be added for
a better fit and the model is somewhat mini-
mal with respect to the data. However, it
should be kept in mind that the fit is not excel-
lent, and that may overconstrain the posterior
distributions. Part of the high covariance
between parameters may also be due to over-
constraining. It is possible to model statistically
the lack of fit by including an autocorrelation
between data points (24). This has not been
attempted here and could be a useful improve-
ment. Note that the posterior uncertainty for
the metabolic parameters would have been fur-
ther underestimated if all physiological para-
meters had been set to predefined values.

The human model, even though complex,
also has difficulties in fitting all the data. This
is true in particular for TCOH concentrations
over a long period of time, and some improve-
ment of the model in that respect may be
needed. Similarly, the adiposity of the subjects
(a measured covariate) does not fit well with
the estimated fraction of body weight as fat. It
is possible that the pharmacokinetic compart-
ment "fat" is not well estimated by external
adiposity measurements, in particular for
extreme values. It also appears that the model
may not be able to describe correctly outlying
subjects like subject 106M. This could be due
to the PBPK model, which lacks some compo-
nent important for such a subject. The misfit
for that subject could also be due to a lack of
flexibility of the statistical model adopted here
(log-normal distributions of the parameters in
the population). A possibility for checking
would be to fit the data of only that subject to
determine if a good fit could be obtained.

The human posterior parameter distri-
butions agree in general quite well with
the corresponding priors, with reduced
uncertainty (since information from the data

has been gained). SDs about the posterior
means are quite low and correspond to a
10-20% CV: The parameter values are overall
quite well identified by the data. There is,
however, a conflict for the values of VMAXC
between the values previously found (3) and
the ones obtained here. This is an important
parameter and a good characterization is
important. The difference could be due to
conflicts between the data analyzed here and
the previous data. For example, extensive
TCOH data are available here. It is also possi-
ble that the conflict is due to differences in
human model structures. A solution to this
dilemma would be to take the model of
Clewell et al. (12) and fit it to the data of
Fisher (2) to obtain an estimate ofVMAXC
with the same data set. In any case, it is not
obvious that the differences in parameter val-
ues would result in notable differences when
predicting toxicologically relevant end points,
such as internal TCA concentrations. This
remains to be checked.

Volumes and flows appear to vary across
subject by 20% (CV), approximately. The
variability is somewhat higher for partition
coefficients (between 30 and 40% CVs) and
much higher for the metabolic parameters
(SDs representing about a factor of 2 differ-
ence). This is similar to what was found for a
small group of human volunteers exposed to
tetrachloroethylene (5). Differences appear to
exist between sexes in the toxicokinetics of
TCE. There are differences between males and
females in alveolar ventilation and adiposity for
the population sample studied. This should be
true for compounds other than TCE and
shows that the model scaling could be
improved. More important for TCE kinetics
are the findings that females have higher
TCOH body over blood partition coefficients,
lower TCA body over blood partition coeffi-
cients, higher Vm,, over Km ratios for TCOH
glucuronidation, higher rate constant scaling
coefficients for TCOH to TCA, and higher
rate constant scaling coefficients for TCA uri-
nary excretion. Note that the statistically
highly significant differences found for these
parameters should be interpreted with some
caution. They are conditional on the model
structure being correct. At least, at this point,
it can be said that there are most certainly dif-
ferences in the kinetic behavior of TCE
between the males and females of the sample
studied. It would have been hard to reach that
conclusion without the statistical adjustment
of a model, given the multiple exposure levels,
differences in body weight, nonlinear kinetics,
etc. Still, these differences may not be signifi-
cant in terms ofTCE toxicity (i.e., biologically
significant). It would be interesting to assess by
simulations whether internal metabolite con-
centrations are much different for males and
females for the same TCE exposure.
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